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INCLUSION OF TWO SUMMABILITY METHODS FOR IMPROPER INTGRAL
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ABSTRACT. Introducing the concept of |R, p|i , k > 1 summability of improper integrals, Orhan established
a result on the inclusion of two summability methods for improper integrals by extending his own result
which was on infinite series, However in this paper we establish an inclusion relation between two index
summability methods |R, p; §|;, and |R, q; 8|k , (k > 1). for improper integrals.

1. INTRODUCTION

Throughout this paper we assume that f is a real valued function which is continuous on [0, 0] and
s(z) = [y f(t) dt. Let o(z) be the Cesdro mean of s(x) .Let v(z) = 1 [ ¢f(t) dt. As defined by Flett [2],
the integral fooo f(t)dt is said to be integrable |C, 1| , k > 1, if

(1.1) /Ooo 2 o' @)|F de = /OOC @I* .

xr

is convergent. In the present case, we call v(z) = L [Ftf(t) dt as a generator of the integral [;° f(t) dt .

Tz

Let p be a real valued, non-decreasing function on [0, c0) such that

ﬂwzéﬂmwmm¢mmm:a

The Riesz mean of s(z) is defined by

op(z) = W

! )/Ow P(t) s(t) dt.

We say that the integral [ f (¢)dt is integrable |R, p|,,k > 1, if
0

o0
(1.2) /0 "oy ()" d
is convergent .In the special case if we take P(x)=1 for all values of x , then |R, p|; Integrability reduces to
|C, 1], integrability of improper integrals. Given any functions f, g, it is customary to write g (z) = O (f (z)),

if there exist n and NV , for every z > N, ’?(3

< 1. The difference between s (z) and its n th weighted mean

op (x), which is called the weighted Kronecker identity, is given by the identity

(13) (@)~ 0p(2) = 1y(a)
where .
0 (@) = pi5 [P

In particularly, by taking p (z) = 1, for all values of z the identity (1.3) reduces to (Sec [1])
s(z) —op(z) =v(x). Since o), (v) = %vp (z), condition (1.3) can be written as

(1.4) s(z) =vp (x)+ /01 %vp (u) du
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In view of the identity (1.4), the function v, (x) is called the generator function of s(x) . Condition (1.1)
can also be written as

. k
1 p(@) k
(1.5) / z* 1< > v, (z)|*dx
0 P (x) !
is convergent. The improper integral fooo f(t) dt is integrable |R,p; 5|1€ if
(1.6) /Oo g OkHh= <—p (z) >k|v (2)|*dz < oo
0 P (z) ?

2. KNOWN RESULT

It is noted that for infinite series, an analogous definition was introduced by Orhan [3] . Using this
definition , Orhan [3] proved the following theorem dealing with |R, p,|, and |R,¢,|, summability methods.

Theorem 2.1. The |R,pyl;, (k> 1) summability implies the |R, q,|;,, (k > 1) summability provided that

(2.1) ngn = 0 (Qn)
(2.2) Py =0 (npn)
(2.3) Qn=0 (nQn)

Dealing with integrability of improper integrals Orhan established the following theorem.

Theorem 2.2. Let p and q be real valued, non-decreasing functions on [0,00) such that as x — oo

(2.4) zq(z) = 0 (Q ()
(2.5) P(z) = O(zp)(z))
(2.6) Q(x) =0 (zq(x))

If fooo f(t)dt is integrable |R,p|y, then it is also integrable |R,q|,, (k > 1).

3. MAIN RESULTS
Extending the result of Ohran, in the present paper we establish the following theorem.

Theorem 3.1. Let p(z) and q(x) be two real valued, non-decreasing functions on [0, 00) satisfying (2.4),(2.5),(2.6)
together with

m xkéq(l‘) tké
(1 " = oaw)
and

m k
(3.2) / =My )| @t = O(1).

If [ f (t)dt is summable |R, p; 6|k, then it is also summsble |R, q;6],, (k > 1).

Proof. Let oy, (z) and o, (x) be the functions of (R,p) and (R,q) means of the integral [;° f(t)dt . If
Jo° £ (t)dt is summable |R,p : 4|, then

/000 gho+h=1 (%) k\vp (x)\kd:c

is convergent. Differentiating the equation (1.4) , we have

£@) =y (@) + 50, @)
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By definition, we obtain

oq(2) =

Q)

’ _ Q('T) * . q(w
7 @) = gars [ Qs @a=

Integrating by parts of the first statement, we have

and

7y 0) = 4 [Q()vp(m—/xq(t)vp(t)dthq@ e 2y

Q@) @@l P
@, PO o 2@ [
D@ G0 e 5o 0ar- 40 g, 0ya

—Uql( )+0q2( )+0’q3( ), say

To complete the proof of the theorem, it is sufficient to show that
/ k=l (m)|kdm =0(1) asm— o0, forr=1,2,3
0
Using conditions (3.1) and (3.2), we have
mo rm
/ 2R gy (@) da = / Ok th=1
Jo

R ( 4(2) )k\yp ()" da

=o() /om 2o (]Il((i))>k|vp (@) dz

=0() / Mo, (0) e
0

=0(1)asm—

by virtue of the hypotheses of theorem 3.1, Applying Holder’s inequality with & > 1 , we get

/Omxfi“k*l\aq,z (m)|kdx:0(1)/0mx5k+k’]< 2 ) (/ @ |dt> dx

:0(1)/0m a(x) )< 0 e ()|vp(t)\dt
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by virtue of the hypotheses of theorem 3.1, Finally, again by Ho6lder’s inequality with k£ > 1, we have

[ e o = o) / St ( 52(f))>k ([ at1o, <t>|’“dt)kd.r
2O ([l @r) e ks [Cawa)
~om / q<t>|vp e [ 43T

0
=0(1 dt
Q Ol
=0(1) asm — o0
by virtue of the hypotheses of theorem 3.1 This completes the proof of the theorem. O

4. CONCLUSION

In the field of summability there are many inclusion theorems of two summability methods for infinite
series. In the present paper we establish a result on inclusion of two summability methods for improper inte-
grals. This result generalizes many results.Further study may be proceeded for other summability methods
for improper integrals.
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